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 ABSTRACT: This work intends to examine, the effects of viscous dissipation and radiation on hydro magnetic stagnation 

point flow of micro polar fluids due to a porous stretching surface. The highly non-linear equations of the problem are 

transformed in to ordinary differential form by using appropriate similarity transformations. The resulting equations are 

solved numerically using Rung-Kutta fourth order method with shooting technique. The results have been computed to 

observe the influence of the physical parameters involved in the study for velocity, temperature and micro rotation. The 

comparison of the results for Newtonian and micro polar fluids is presented. 
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1. INTRODUCTION 
Micropolar fluids introduced by Eringen [1] are the fluid 

that belongs to a category of fluids that have non 

symmetrical stress tensor.  These fluids could include rigid 

unsystematically (or spherical) particle suspended in an 

extremely permeable medium, wherever the deformation of 

the particle is unheeded. This category of fluids represents, 

some industrial vital fluids like paints, body fluids, 

polymers, combination fluids, suspension fluids, animal 

blood, among the varied non-Newtonian fluids. Eringen [2] 

after wards developed the theory of thermo micro polar 

fluids by extending theory of min polar fluids. Moreover, 

Lukaszewicz [3] provided extensive surveys of literature for 

micro polar fluids. 

Ever since, the micro polar fluids theory has become a 

popular and interesting research area. Researchers are 

engaged to explore new useful results using Micropolar 

fluid theory. Kasiviswanathan and Gandhi [4] obtained a 

category of achievable solutions of MHD flow of a micro 

polar liquid restricted between two endless, insulated, 

similar, non-coaxially pivoting disks. Sajjad and Kamal [5] 

examined boundary layer stream for miniaturized scale 

polar electrically conducting liquid on a revolving disk in 

the vicinity of magnetic field. Kim and Lee [6] found the 

analytical solution of micropolar fluids. Ashraf et al. [7] 

obtained numerical simulation for 2- dimensional flow of 

micropolar fluid between an impermeable and a permeable 

disk. Lee et al. [8] delineated the results on a wobbly 

(MHD) flow with chemicals react micro polar fluid over 

an infinite perpendicular porous plate. Sajjad et al. [9] 

studied MHD stagnation point flow of micropolar fluids 

towards a stretching sheet.  Ahmad et al [10] investigated 

convective heat transfer for MHD micropolar fluids flow 

through porous medium over a stretching surface. Adhikari 

[11] investigated the magnetohydrodynamic mixed 

convection stagnation point flow of micropolar fluids due to 

stretching vertical surface. 

The radiation effects may play a major role in engineering, 

technology and thermal processes.  

Some necessary applications of radiative heat transfer are 

like cooling of nuclear reactors, warmth plasmas, power 

generation systems, liquid metal fluids and heat transfer 

control system in polymer processing industry.  Abo-

Eldahab and Ghonaim [12] described the character of 

thermal edge cover flow over a stretched sheet in a micro 

polar fluid in existence of energy. Ahmad Khidir [13] 

investigated the impacts of thick scattering and Ohmic 

warming on MHD convective stream because of a 

permeable rotating disk, considering the variable liquid 

properties in the vicinity of Hall and thermal radiation. 

Reddy et al. [14] studied the heat and mass transfer effects 

on an unsteady MHD flow of a chemically reacting 

micropolar fluid over an infinite perpendicular porous plate 

through a porous medium with Hall effects and thermal 

radiation in the occurrence of radiation absorption. The 

impact of warm radiation and magnetic field on uneven 

blended convection stream and heat transfer over a porous 

extending plate was discussed by Elbashbeshy et al. [15]. 

In this paper, we obtained the numerical solution for the 

radiation and viscous dissipation effects on hydromagnetic 

stagnation point flow of micropolar fluids due to a porous 

stretching surface, to extend the work of Arthur and Seini 

[16]. The effects of the physical parameters of the study 

have been observed and discussed in detail through 

geographical patteren of the flow and heat transfer. 

 

2. MATHEMATICAL ANALYSIS 
 Consider micropolar fluid flow towards the 

stagnation point on a porous stretching surface. The fluid is 

electrically conducting. The flow is steady, two-dimensional  

and incompressible. The magnetic field of strength Bo is 

perpendicular to the surface. The motion of fluid is always 

towards the stagnation point over a stretching surface The 

motion of fluid in always in the positive y direction. The 

tangential velocity varies proportional to a specified 

distance x. From the stagnation point, the stream velocity 
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U∞ varies proportional to the distance x, so that Uᵚ = bx and 

U∞ = ax, where a and b are constants.The induced magnetic 

field and pressure gradient are neglected. The temperature 

of wall is maintained at a constant value Tᵚ. The body 

couple is absent.  The velocity vector: ),,( wvuVV  and 

spin vector: ),,(
321
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Under the above assumptions the equations governing the 

problems are: 
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The boundary conditions are: 
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Where 𝛖 is kinematic viscosity coefficient, α is the thermal 

diffusivity, 𝜎 is the electrical conductivity, K is the thermal 

conductivity, 
p

c is the specific heat capacity at constant 

pressure, qr is the radiative heat flux and Bo is the magnetic 

field strength,  

μ is dynamic viscosity, κ, γ are additional viscosity 

coefficients for micropolar fluid. j is micro inertia, ρ is 

density.
 

The velocity has two components that are described as u and 

v in terms of the stream function Ѱ (x, y) as given below: 
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Using similarity transformations: 
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where *  is 

Stefan-Boltzmann constant and K  is mean absorption 

coeffient.  

Equation of continuity (1) is identically satisfied. 

Substituting the above appropriate relation in equations (2), 

(3) and (4) we get  
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and the boundary conditions are 

 (9) 
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The dimensional less material constants are

  

 

 

 

3. RESULTS AND DISCUSION 
The governing highly nonlinear ordinary differential 

equations (6-8) are solved   with the boundary conditions 

(9). Runge-Kutta 4th order method with shooting technique 

has been applied to get the numerical result of the problem. 

Several computations have been made for various values of 

the parameters involved in the physical and mathematical 

model of the problem. The effects of these parameters 

namely magnetic parameter M, velocity ratio number λ, 

radiation parameter Ra , Prandtl number Pr, Brinkmann 

number Br  have been observed on the flow kinematics and 

temperature distribution. The effects of the non-dimensional 

material constants are also being noticed for velocity and 

micro rotation function. The results have been presented in 

graphical form. 

Figure 1 shows that when λ < 1 (λ=0.1) the horizontal 

velocity component f
/   

 increases with increase in the values 

of micro rotation parameter C1, this figure presents the 

comparison of Newtonian and micropolar fluids. The 

velocity of micropolar fluids is greater than that of 

Newtonian fluids.  

But when λ > 1 (λ=2), the velocity component f
/
 is inversely 

proportional to the micro polar parameter C1. It decreases 

with increase in the values of  C1 as show in figure 2. It is 

also noticed that the velocity for Newtonian fluid is greater 

than that of micropolar fluids. 

 Figure 3 demonstrates the pattern of micro rotation for 

different values of C1 when λ=0.1. It is noted that the micro 

rotation increases very small near the stretching surface but 

decreases away from the surface with increase in the value 

of C1. Figure 4 depicts the micro rotation L for various 

values of C1 when λ > 1 (λ=2). The micro rotation decreases 

near stretching surface but increases away from the surface 

with increase in the values of C1. It can also be noticed that 

the micro rotation has opposite sense of rotation when λ < 1 

and λ > 1. 
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Figure 5 presents the velocity f
/
 for different values of 

suction parameter fw when λ = 0.1. The velocity decreases 

with increasing values of fw. Figure 6 shows the behavior of 

micro rotation when λ = 0.1 and for different values of fw. 

The micro rotation increases with increase in the values of 

fw. 

Figure 7 plots the velocity f for different values of λ < 1. 

The velocity is directly proportional to the value of λ . It 

increases with increase in the values of λ. The micro 

rotation has been plotted for different values of λ < 1 in 

figure 8. The micro rotation decreases with increasing 

values of λ. Figure 9 demonstrates the velocity f   for 

different values of magnetic parameter M. The velocity 

decreases with increase in the magnetic field strength.  

Figure 10 depicts the effect of magnetic force on micro 

rotation. It is observed that the micro rotation increases near 

the surface but decreases away from the surface with 

increase in the magnetic field strength and it changes the 

sense of rotation at some distance from the surface. 

The temperature is inversely proportional to the velocity 

ratio parameter λ. It reduces with increase in the values of λ 

and suction parameter fw as show respectively in figure 11 

and figure 12. The temperature function  is directly 

proportional to the magnetic parameter M. It increases with 

increase in the magnetic parameter M as presented in figure 

13.  

The figure 14 shows that the thermal boundary layer 

decreases with increase in the values of Prandtl number Pr. 

The radiation parameter Ra causes increase in the value of 

temperature function due to addition of radiative heating as 

shown in figure 15. The thermal boundary layer thickness 

increases with the increase in the value of Brinkmann 

number Br. It is due to the fact that viscous dissipation adds 

up heating to the fluid. The temperature plots are given in 

figure 16 for various values of Br.    

 

Fig. 1:  graph of f when C1 = 0, 0.2, 0.6, 1For 𝜆 = 0.1 

 

Fig. 2:  graph of f when C1 = 0, 0.2, 0.6, 1For 𝜆 = 2 

 

Fig. 3:  graph of L when C1 = 0.1, 0.5, 1 For 𝜆 = 0.1. 

 

Fig. 4:  graph of L when C1 = 0.1, 0.5, 1For 𝜆 = 2 

 

Fig. 5:  graph of f when
w

f  = 0, 0.5, 1.5, 2, For 𝜆 = 0.1 
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Fig. 6:  graph of L when
w

f  = 0, 0.5, 1.5, 2, For 𝜆 = 0.1 

 

Fig. 7:  graph of f when 𝜆 = 0.1, 0.3, 0.5 

 

Fig. 8:  graph of L when 𝜆 = 0.1, 0.3, 0.5 

 

Fig. 9:  graph of f when M = 0, 0.5, 1.5, 2, For 𝜆 = 0.1 

 

 

Fig. 10:  graph of L when M = 0, 0.5, 1.5, 2, For 𝜆 = 0.1 

 

Fig. 11:  graph of θ when λ = 0.1, 0.5, 1, 1.5 

 

Fig. 12:  graph of θ when 
w

f  = 0, 0.5, 1.5, 2 

 

Fig. 13:  graph of θ when M = 0.1, 0.5, 1,2 
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Fig. 14:  graph of θ when Pr = 0, 0.5, 1.5, 2 

 

Fig. 15:  graph of θ when Ra = 0, 0.5, 1.5, 2 

 

 

Fig. 16:  graph of θ when Br = 0, 0.5, 1.5, 2 

4. Conclusion 

Numerical solution of the radiation and viscous dissipation 

effects on hydromagnetic stagnation point flow of 

micropolar fluids due to a porous stretching surface has 

been obtained in order to observe the effect of physical 

parameter on velocity, micro rotation and temperature 

functions. The salient results are summarized as follows. 

 It is to mention that when vortex viscosity k and the 

micro rotation vector  are zero, problem of Micropolar 

fluids corresponding to the Newtonian fluids flow. 

 It is noticed that when λ < 1 the velocity of Micropolar 

fluid is greater than that of Newtonian fluid but when λ > 1 

the velocity of Newtonian fluid is greater than that of 

Micropolar fluid. 

 The velocity f
/
 increases with increasing value of λ. The 

velocity decreases with increase in the values of fw. The 

velocity increases with increase in the values of C1 when λ < 

1 but velocity decreases with increase in the values of C1 

when λ < 1. The velocity decreases with increase in the 

values of M. 

 When λ < 1 the micro rotation increases near the 

surface but decreases away from the surface with increasing 

values of C1. 

 When λ < 1 the micro rotation decreases near the 

surface but increases away from the surface with increasing 

values of C1. 

 The micro rotation has opposite sense of rotation for λ 

< 1 and λ > 1. 

 The micro rotation decreases with increasing values of 

λ. 

 The micro rotation increases near the surfaces but 

decreases away from the surface with increase in the values 

of M. 

 The temperature decreases with increasing values of λ 

and fw. 

 The temperature increases with increasing values of M. 

The thermal boundary layer decreases with increase in the 

values of Pr and it increases with increase in the values of 

Br. 
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